IB Mathematics SL Revision Checklist

V1.0 August 2017

1 Algebra

- \square Find common difference(d), first term(u_1), nth term(u_n), sum of n terms(S_n) in an arithmetic sequence.
- \square Find common ratio(r), first term (u_1) , nth term (u_n) , sum of n terms (S_n) , sum to infinity (S_∞) in a geometric sequence. Remember that a geometric series converges only when -1 < r < 1.
- □ Recognise arithmetic and geometric patterns in real world problems including population growth and compound interest.
- \square Apply properties of sigma notation to solve series problems.

$$\sum_{k=1}^{n} a = an \qquad \sum_{k=1}^{n} (ak) = a \sum_{k=1}^{n} k \qquad \sum_{k=1}^{n} (ak+b) = a \sum_{k=1}^{n} k + \sum_{k=1}^{n} b \quad \text{where } a \text{ and } b \text{ are constants.}$$

 \square Use algebraic simplification methods such as expansion and factorisation to solve problems.

$$a(b+c) = ab + ac$$
 $(a+b)(c+d) = ac + ad + bc + bd$ $(a \pm b)^2 = a^2 \pm 2ab + b^2$ $a^2 - b^2 = (a+b)(a-b)$

- □ Solve simultaneous equations using substitution, elimination or using graphical method using GDC.
- \square Use rules of exponents to solve problems.

$$a^m \times a^n = a^{m+n}$$
 $a^m \div a^n = a^{m-n}$ $a^m = \frac{1}{a^{-m}}$ $a^0 = 1$ $(a^m)^n = a^{mn} = a^{nm}$

- \square Convert between exponent notation and log notation. $a^x = b \Leftrightarrow x = log_a b$.
- \square Use rules of logarithms to solve problems.
- \square Use the general term ((r+1)th term) of a binomial expansion ${}^nC_r(a)^{n-r}(b)^r$ to find a given term.
- \square Reverse binomial expansion to find the terms a or b or the power n in $(a+b)^n$.

2 Functions and Equations

 \square Remember the shape of the parent functions when a > 0 and a < 0.

$$y = ax$$
 $y = ax^2$ $y = ax^3$ $y = ax^{-1} = a\frac{1}{x}$ $y = ax^{-2} = a\frac{1}{x^2}$ $y = a^x$ $y = a\log(x)$

 \square Find **domain** (all the values that x can take) of a function using the three scenarios.

$$f(x) = \frac{1}{x-a} \Rightarrow x - a \neq 0$$
 $f(x) = \sqrt{x-a} \Rightarrow x - a \geqslant 0$ $f(x) = \log(x-a) \Rightarrow x - a > 0$

- \square Find the vertical asymptotes of a function using the three scenarios above.
- \square Find the **range** (all the values that y can take) of a function.
- \square Find the horizontal asymptotes of a function by considering what happens to the function when $x \to \infty$. Remember the two common cases,

$$f(x) = \frac{1}{x-a} + b$$
 when $x \to \infty, f(x) \to b$ $f(x) = a^{-x}$ when $x \to \infty, f(x) \to 0$

	Find inverse of a function, f^{-1}	(x). Swap x and y the	n make y the su	bject.		
	Know that the graphs of the function and its inverse are mirror images on the line $y = x$. Use this information to solve problems.					
	Find $(f \circ g)(x)$ given $f(x)$ and $g(x)$.					
	Find points of intersection when two functions $f(x)$ and $g(x)$ intersect - Equate the two functions and solve manually or use GDC (paper 2).					
	Know the eight types of transformations of graphs - y-translation (\uparrow or \downarrow), x-translation (\leftarrow or \rightarrow), y-stretch (\uparrow or \uparrow), x-stretch (\leftarrow or \rightarrow).					
	Solve quadratic equations using method using GDC (paper 2)	ng factorisation, comp	oleting square r	nethod, formul	a or by graphical	
	Find the x-intercept(zeros or re	oots), y-intercept of a	quadratic graph			
	Find the line of symmetry and the Line of symmetry Coordinates of vertex	the coordinates of the v $ax^2 + bx + c$	vertex in all thre $a(x-p)(x-p)$	e forms of the q	quadratic equation. $a(x-h)^2 + k$	
	Line of symmetry	$x = \frac{-b}{2a}$	$x = \frac{p+q}{2}$	1)	x = h	
	Coordinates of vertex	$\left(\frac{\sigma}{2a}, f\left(\frac{\sigma}{2a}\right)\right)$	$\left(\frac{p+q}{2}, f\left(\frac{p+q}{2}\right)\right)$))	(h,k)	
3	Circular functions and	d trigonometry				
	Find arc length, area of a sector	or and use it to solve p	roblems.			
	Find the three ratios sine, cosin	ne and tan for any ang	le using 'basic a	ngle' in each q	uadrant.	
	Know the sign of each ratio in	each quadrant - All S	ilver T ea C ups.			
	Remember the identities that a	apply in each quadrant				
	$\mathbf{1st} \to \sin(90^{\circ} - \theta) = c$ $\mathbf{3rd} \to \tan(180^{\circ} + \theta) = c$					
	Know the trigonometric ratios	for common angles (0°	°, 30°, 45°, 60°, 9	0°) by memory	(paper 1).	
	Use inverse trigonometric value	es to find angles within	a given domair	1.		
	Solve problems using trigonome	etric identities (Pythag	gorean identity,	double angle fo	ormula).	
	\Box Know the shape of $f(x) = \sin x$, $f(x) = \cos x$ and $f(x) = \tan x$ graphs.					
	□ Solve real world problems using the knowledge of general sine and cosine functions including Ferris wheels, water wheels, movement of tides and buoys.					
	Approximate a circular functio	n using 'sine regression	n' function in yo	our GDC (pape	er 2).	
	Solve problems using sine rule,	cosine rule and area o	f triangle.			
	Solve real world problems using	g bearings, angle of ele	vation and angl	e of depression		
4	Vectors					
	Represent the path between tw	o points using multiple	es of \overrightarrow{a} , \overrightarrow{b} .			

	Find the vector \overrightarrow{AB} given the coordinates of A and B.
	Switch between column vector form $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and unit vector form $(i+j+k)$.
	Find the magnitude (size) of a vector.
	Find the unit vector (a vector that has a magnitude of 1) of a vector.
	Find the scalar product (dot product) of two vectors and use it to find angle between two vectors. Know that for perpendicular vectors the dot product is zero.
	Write the vector equation of a line using the direction of the line and a point through which it passes.
	Know the properties of basic shapes and use vector algebra for proofs. Triangles - equilateral, isosceles, right angled and scalene. Quadrilaterals - square, rectangle, trapezium, parallelogram, rhombus and kite. Regular polygons - pentagon, hexagon, heptagon, octagon etc.
	Switch between vector form of a line and Cartesian form of a line.
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ and $\frac{x - b_1}{a_1} = \frac{y - b_2}{a_2} = \frac{z - b_3}{a_3} = t$
	Show if two lines are parallel, intersecting or skew. Parallel lines - Direction vectors (of lines) are the same, one could be a scalar multiple of the other. Intersecting lines - Values of parameter s and t will satisfy all three equations for x, y and z . Skew lines - Directions are different and there are no values of the parameters s and t that will satisfy all three equations for x, y and z .
	Show that given three points A, B, C are co-linear. Find the directional vectors of \overrightarrow{AB} and \overrightarrow{AC} and show that they are equal.
	Know the relationship between displacement, velocity(direction), time and use it to solve problems.
	Final displacement = Initial displacement + (velocity vector) \times time
	Know that the magnitude of the velocity vector gives speed.
5	Statistics and Probability
	Find the mean, median, mode of a set of data.
	Find mean(\bar{x}), median, mode, standard deviation(σ), variance(σ^2) from frequency tables, grouped frequency tables using GDC (paper 2).
	Read and construct box & whisker plots, stem & leaf plots.
	Know what happens to the mean, standard deviation and variance when,
	\Box The same value is added or subtracted to all data points. New mean = old mean \pm value, standard deviation and variance remain the same
	□ When all data points are multiplied or divided by the same value. Multiplied - new mean = old mean×value, new s.d = old s.d×value, new var = old var×(value) ² Divided - new mean = old mean÷value, new s.d = old s.d÷value, new var = old var÷(value) ²

	Find first quartile (Q_1) , second quartile or median (Q_2) , third quartile (Q_3) , percentiles and Inter Quartile Range or $IQR(Q_3 - Q_1)$ in cumulative frequency diagrams.					
	Find Pearson's product-moment correlation coefficient (r) using GDC and describe the correlation of two data sets using appropriate keywords.					
	Find the regression line $y = ax + b$ for two data sets and use it for estimations.					
	Know when the estimations are reliable. Know the meaning of interpolation, extrapolation, outliers.					
	Represent probability of multiple events using tree diagrams, grids and Venn Diagrams.					
	Use Venn diagrams to represent intersection(and), union(or) and compliment(not) of events.					
	Use probability formula to solve problems with mutually exclusive events, independent events and conditional probability.					
	Calculate the expected value for discrete data and know that $E(X) = 0$ in a 'fair game'.					
	Solve binomial probability problems manually or by using Binormpdf, Binormcdf in GDC (paper 2).					
	☐ Find the mean and variance of a binomial probability distribution.					
	\square Know properties of normal distribution and solve problems using Normalcdf, Inversenorm in GDC.					
	Find mean (μ) or standard dev	$viation(\sigma)$ in a normal	distribution using the	z - distribution.		
6	Calculus					
	Know how to find limits of a f	function, limits to infi	nity.			
	Know how to differentiate using first principles, using basic rules - general, chain, product and quotient.					
	Know how to differentiate using	ng first principles, usin	g basic rules - general, cl	hain, product and quotient.		
	Use derivatives to find the nat		Minimum	Point of inflexion		
	Use derivatives to find the nat Sign change of slope	ture of turning points. $ \underbrace{\text{Maximum}}_{+ \to -} $	$\begin{array}{c} \text{Minimum} \\ - \rightarrow + \end{array}$	Point of inflexion $+ \rightarrow + \text{ or } - \rightarrow -$		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx}$ or $f'(x)$ at x	ture of turning points. Maximum	Minimum	Point of inflexion		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx} \text{ or } f'(x) \text{ at } x$ $\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x$	ture of turning points. Maximum $+ \rightarrow -$ 0 negative	$\begin{array}{c} \text{Minimum} \\ - \to + \\ 0 \\ \text{positive} \end{array}$	Point of inflexion $+ \rightarrow + \text{ or } - \rightarrow -$ any value 0		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx}$ or $f'(x)$ at x	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accounts the second se	$ \frac{\text{Minimum}}{-\to +} $ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing } ($	Point of inflexion $+ \to + \text{ or } - \to -$ any value 0 $\frac{dy}{dx} < 0$.		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx} \text{ or } f'(x) \text{ at } x$ $\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x$ Identify intervals for which a function of the second se	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accomproblems.	Minimum $- \to +$ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing (}$ celeration given the equa	Point of inflexion $+ \to + \text{ or } - \to -$ any value 0 $\frac{dy}{dx} < 0).$ ation for displacement. Use		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx} \text{ or } f'(x) \text{ at } x$ $\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x$ Identify intervals for which a full Use derivatives to find equation these equations to solve motion	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accomproblems. e functions (find maximum controls of the problem).	Minimum $- \to +$ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing (}$ celeration given the equation or minimum value	Point of inflexion $+ \to + \text{ or } - \to -$ any value 0 $\frac{dy}{dx} < 0).$ ation for displacement. Use		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx} \text{ or } f'(x) \text{ at } x$ $\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x$ Identify intervals for which a full Use derivatives to find equation these equations to solve motion. Use turning points to optimise Integrate functions using basis.	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accomproblems. The functions (find maximum controls of the functions) in the functions of th	Minimum $- \to +$ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing (}$ celeration given the equation or minimum value stitution or observation.	Point of inflexion $+ \to + \text{ or } - \to -$ any value 0 $\frac{dy}{dx} < 0).$ ation for displacement. Use		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx} \text{ or } f'(x) \text{ at } x$ $\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x$ Identify intervals for which a full Use derivatives to find equation these equations to solve motion. Use turning points to optimise Integrate functions using basis given in the problem to find on the state of the state o	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accomproblems. The functions (find maximum or rules - general, substant C . The egrals with limits) markets are given by the substant C .	Minimum $- \to +$ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing (}$ celeration given the equation or minimum value stitution or observation.	Point of inflexion $+ \to + \text{ or } - \to -$ any value 0 $\frac{dy}{dx} < 0).$ ation for displacement. Use		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx} \text{ or } f'(x) \text{ at } x$ $\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x$ Identify intervals for which a full Use derivatives to find equation these equations to solve motion. Use turning points to optimise Integrate functions using basis given in the problem to find on Find definite integrals (integrals).	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accomproblems. The functions (find maximum accomproblems) or rules - general, substant C . The egrals with limits maximum accompanions and use them to see the equations of th	Minimum $- \to +$ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing (}$ celeration given the equation of the equatio	$\frac{\text{Point of inflexion}}{+ \to + \text{ or } - \to -}$ any value 0 $\frac{dy}{dx} < 0).$ $\text{ation for displacement. Use}$ $\text{s in a given problem}).$ $\text{Use boundary conditions}$		
	Sign change of slope \[\frac{dy}{dx} \text{ or } f'(x) \text{ at } x \] \[\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x \] Identify intervals for which a full use derivatives to find equation these equations to solve motion. Use turning points to optimise. Integrate functions using basis given in the problem to find on the problem to find on the properties of integrals. The properties of integrals are a under a curve, area in the properties of integrals.	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accomproblems. The functions (find maximum or rules - general, substant C . The egrals with limits) marginals and use them to substant of the equation	Minimum $- \to +$ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing (}$ celeration given the equation of the equatio	Point of inflexion $+ \rightarrow + \text{ or } - \rightarrow -$ any value 0 $\frac{dy}{dx} < 0).$ ation for displacement. Use s in a given problem). Use boundary conditions		
	Use derivatives to find the natural Sign change of slope $\frac{dy}{dx} \text{ or } f'(x) \text{ at } x$ $\frac{d^2y}{dx^2} \text{ or } f''(x) \text{ at } x$ Identify intervals for which a function of these equations to solve motion. Use turning points to optimise Integrate functions using basing given in the problem to find one of the problem of the properties of integrals. Find definite integrals (integrals area under a curve, area in negative.	ture of turning points. Maximum $+ \rightarrow -$ 0 negative function is increasing ons for velocity and accomproblems. The functions (find maximum accomproblems) The function is increasing accomproblems. The function is increasing acco	Minimum $- \rightarrow +$ 0 positive $(\frac{dy}{dx} > 0) \text{ or decreasing (}$ celeration given the equation of the equatio	Point of inflexion $+ \to + \text{ or } - \to -$ any value 0 $\frac{dy}{dx} < 0).$ Action for displacement. Use s in a given problem). Use boundary conditions a below the x axis is always at the x axis or y axis.		